Search results for "Absolute continuity"
showing 10 items of 34 documents
On the enhancement of diffusion by chaos, escape rates and stochastic instability
1999
We consider stochastic perturbations of expanding maps of the interval where the noise can project the trajectory outside the interval. We estimate the escape rate as a function of the amplitude of the noise and compare it with the purely diffusive case. This is done under a technical hypothesis which corresponds to stability of the absolutely continuous invariant measure against small perturbations of the map. We also discuss in detail a case of instability and show how stability can be recovered by considering another invariant measure.
A local notion of absolute continuity in IR^n
2005
We consider the notion of p, δ-absolute continuity for functions of several variables introduced in [2] and we investigate the validity of some basic properties that are shared by absolutely continuous functions in the sense of Maly. We introduce the class $δ−BV^p_loc(\Omega,IR^m)$ and we give a characterization of the functions belonging to this class.
Regular subclasses in the Sobolev space
2009
Abstract We study some slight modifications of the class α - A C n ( Ω , R m ) introduced in [D. Bongiorno, Absolutely continuous functions in R n , J. Math. Anal. and Appl. 303 (2005) 119–134]. In particular we prove that the classes α - A C λ n ( Ω , R m ) , 0 λ 1 , introduced in [C. Di Bari, C. Vetro, A remark on absolutely continuous functions in R n , Rend. Circ. Matem. Palermo 55 (2006) 296–304] are independent by λ and contain properly the class α - A C n ( Ω , R m ) . Moreover we prove that α - A C n ( Ω , R m ) = ( α - A C λ n ( Ω , R m ) ) ∩ ( α - A C n , λ ( Ω , R m ) ) , where α - A C n , λ ( Ω , R m ) is the symmetric class of α - A C λ n ( Ω , R m ) , 0 λ 1 .
Absolute continuity of mappings with finite geometric distortion
2015
Suppose that ⊂ R n is a domain with n ≥ 2. We show that a continuous, sense-preserving, open and discrete mapping of finite geometric outer distortion with KO(·,f) ∈ L 1/(n 1) loc () is absolutely continuous on almost every line parallel to the coordinate axes. Moreover, if U ⊂ is an open set with N(f,U) 0 depends only on n and on the maximum multiplicity N(f,U).
A Lebesgue-type decomposition for non-positive sesquilinear forms
2018
A Lebesgue-type decomposition of a (non necessarily non-negative) sesquilinear form with respect to a non-negative one is studied. This decomposition consists of a sum of three parts: two are dominated by an absolutely continuous form and a singular non-negative one, respectively, and the latter is majorized by the product of an absolutely continuous and a singular non-negative forms. The Lebesgue decomposition of a complex measure is given as application.
Absolutely continuous functions with values in a Banach space
2017
Abstract Let Ω be an open subset of R n , n > 1 , and let X be a Banach space. We prove that α-absolutely continuous functions f : Ω → X are continuous and differentiable (in some sense) almost everywhere in Ω.
A remark on absolutely continuous functions in ℝ n
2006
We introduce the notion ofα, λ-absolute continuity for functions of several variables and we compare it with the Hencl’s definition. We obtain that eachα, λ-absolutely continuous function isn, λ-absolutely continuous in the sense of Hencl and hence is continuous, differentiable almost everywhere and satisfies change of variables results based on a coarea formula and an area formula.
On the existence of conditionally invariant probability measures in dynamical systems
2000
Let T : X→X be a measurable map defined on a Polish space X and let Y be a non-trivial subset of X. We give conditions ensuring the existence of conditionally invariant probability measures to non-absorption in Y. For dynamics which are non-singular with respect to some fixed probability measure we supply sufficient conditions for the existence of absolutely continuous conditionally invariant measures. These conditions are satisfied for a wide class of dynamical systems including systems that are Φ-mixing and Gibbs.
Absolute continuity for Banach space valued mappings
2007
We consider the notion of p,λ,δ-absolute continuity for Banach space valued mappings introduced in [2] for real valued functions and for λ = 1. We investigate the validity of some basic properties that are shared by n, λ-absolutely continuous functions in the sense of Maly and Hencl. We introduce the class $δ-BV^p_{λ,loc}$ and we give a characterization of the functions belonging to this class.
On a normal form of symmetric maps of [0, 1]
1980
A class of continuous symmetric mappings of [0, 1] into itself is considered leaving invariant a measure absolutely continuous with respect to the Lebesgue measure.